Optimal Design of Discrete Output Feedback Control Using Genetic Algorithm for a Multi Area Power System
نویسنده
چکیده
Abstract. In this paper, a design of an optimal output feedback control for decentralized Load Frequency Controllers (LFC) of a multi-area interconnected power system using Genetic Algorithm (GA), is presented. The original system is decomposed into subsystems (areas). A Local Output Feedback Controller (LOFC) is designed for each subsystem and its relative optimal gain matrix is derived using GA. The proposed approach is implemented on a three-area interconnected power system and could be extended to more areas in different configurations (radial, ring). The system performance is analysed by simulating different disturbances. Effectiveness is shown through a comparative study with the Conventional Integral Control (CIC) for different operating conditions and a wide-range variation in the system parameters with the presence of the turbine Generation Rate Constraints (GRC) nonlinearity.
منابع مشابه
Load Frequency Control in Power Systems Using Multi Objective Genetic Algorithm & Fuzzy Sliding Mode Control
This study proposes a combination of a fuzzy sliding mode controller (FSMC) with integral-proportion-Derivative switching surface based superconducting magnetic energy storage (SMES) and PID tuned by a multi-objective optimization algorithm to solve the load frequency control in power systems. The goal of design is to improve the dynamic response of power systems after load demand changes. In t...
متن کاملWind Turbine Transformer Optimum Design Assuming a 3D Wound Core
A wind turbine transformer (WTT) is designed using a 3D wound core while the transformer’s total owning cost (TOC) and its inrush current performance realized as the two objective functions in a multi-objective optimization process. Multi-objective genetic algorithm is utilized to derive Pareto optimal solutions. The effects of inrush current improvement on other operating and design parameters...
متن کاملComputational fluid dynamics analysis and geometric optimization of solar chimney power plants by using of genetic algorithm
In this paper, a multi-objective optimization method is implemented by using of genetic algorithm techniques in order to determine optimum configuration of solar chimney power plant. The objective function which is simultaneously considered in the analysis is output power of the plant. Output power of the system is maximized. Design parameters of the considered plant include collector radius (R...
متن کاملController Design of SSSC for power System Stability Enhancement
In this paper, a novel method is developed for designing the output feedback controller for Static Synchronous Series Compensator (SSSC). In the proposed method, the problem of selecting the output feedback gains for the SSSC controllers is changed into an optimization problem with a time domain-based objective function.Then, it is solved by using the particle swarm optimization (PSO) algorithm...
متن کاملController Design of SSSC for power System Stability Enhancement
In this paper, a novel method is developed for designing the output feedback controller for Static Synchronous Series Compensator (SSSC). In the proposed method, the problem of selecting the output feedback gains for the SSSC controllers is changed into an optimization problem with a time domain-based objective function.Then, it is solved by using the particle swarm optimization (PSO) algorithm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009